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Crystal structures deposited in the Protein Data Bank

illustrate the diversity of biological macromolecular recogni-

tion: transient interactions in protein–protein and protein–

DNA complexes and permanent assemblies in homodimeric

proteins. The geometric and physical chemical properties of

the macromolecular interfaces that may govern the stability

and specificity of recognition are explored in complexes and

homodimers compared with crystal-packing interactions. It is

found that crystal-packing interfaces are usually much smaller;

they bury fewer atoms and are less tightly packed than in

specific assemblies. Standard-size interfaces burying 1200–

2000 Å2 of protein surface occur in protease–inhibitor and

antigen–antibody complexes that assemble with little or no

conformation changes. Short-lived electron-transfer com-

plexes have small interfaces; the larger size of the interfaces

observed in complexes involved in signal transduction and

homodimers correlates with the presence of conformation

changes, often implicated in biological function. Results of the

CAPRI (critical assessment of predicted interactions) blind

prediction experiment show that docking algorithms effi-

ciently and accurately predict the mode of assembly of

proteins that do not change conformation when they associate.

They perform less well in the presence of large conformation

changes and the experiment stimulates the development of

novel procedures that can handle such changes.
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1. Introduction

Protein–protein recognition is an essential component of the

cell machinery implicated in most biological processes. Its

study, a very active part of functional genomics, uses methods

that range from genetics to biophysics, crystallography, bio-

informatics and computer modelling. Here, we analyze struc-

tural data deposited in the Protein Data Bank (PDB; Berman

et al., 2000), taking examples that illustrate both the specific

recognition of proteins that form functional complexes and

other multimolecular assemblies and the nonspecific inter-

actions that build up protein crystals.

2. Diversity of protein–protein recognition

Protein–protein recognition is as diverse as life itself and the

structures that are presently available cover only a fraction of

that diversity (Jones & Thornton, 1995, 1996, 2000; Larsen et

al., 1998; Wodak & Janin, 2002; Noreen & Thornton, 2003a).

The sample listed in Table 1 contains a few hundred hand-

picked structures representing the various types of inter-

actions that take place between proteins in cells and

organisms. Protein–protein complexes comprise proteins that



fold independently; in contrast, homodimers are permanent

assemblies, usually obligate as the isolated subunits are not

present in cells. Crystal contacts are (very useful) artifacts of

the crystallization procedure. Each complex or homodimer

contains a specific interface, which we may compare with the

nonspecific packing interfaces formed between protein mole-

cules in a crystal. Crystal-packing interfaces are usually small,

but we selected some that are comparable in size to specific

interfaces. We analyze their geometric and chemical proper-

ties and attempt to draw general rules from the comparison.

We confirm rules derived many years ago from analysis of only

a handful of X-ray structures (Chothia & Janin, 1975; Janin &

Chothia, 1990) and add some new ones (Lo Conte et al., 1999),

trusting that this trend will hold as more data shed further light

on aspects of protein–protein recognition that still lack a

structural basis.

2.1. Antigen–antibody and protease–inhibitor complexes:
standard-size interfaces and rigid-body recognition

The interaction of cognate antibodies with protein antigens

plays an essential role in the immune system of vertebrates. It

is a paradigm of specific recognition and one of the best

represented in the PDB (Braden & Poljak, 2000; Sundberg &

Mariuzza, 2002). Table 1 includes 18 protein antigen–antibody

complexes and Fig. 1 shows the size distribution of their

interfaces along with those of other transient complexes. The

size is estimated as the interface area B = ASA1 + ASA2 �

ASA12 calculated as the solvent-accessible surface area ASA12

of the complex less that of the dissociated components ASA1

and ASA2 (Lee & Richards, 1971; Chothia & Janin, 1975; note

that other authors often report the quantity B/2). The anti-

body and the antigen moieties of the complex contribute

almost equally to B. The distribution of the values is narrow

for antigen–antibody complexes relative to the other types. All

but one of the 19 interfaces are of ‘standard size’, with B in the

range 1200–2000 Å2. The average interface atom loses about

10 Å2 of ASA in the complex and therefore a standard-size

interface involves about 80 atoms belonging to approximately

23 amino-acid residues on each component.

Another property shared by antigen–antibody complexes of

known structure is the limited extent to which the antigen

undergoes conformation changes upon binding the antibody.

This can be assessed when the antigen structure is known

independently, which is the case of most of the complexes in

Table 1. A superposition of the free and bound antigen indi-

cates that the main chain undergoes only local movements of

1–2 Å, although side-chain rotations occur. Thus, the antigen

binds as a (quasi) rigid body, whereas some of the antigen-

binding loops may be mobile in the antibody. However, the

X-ray structure of the free antibody is rarely available and

these changes can only be assessed in a few cases.

The size distribution of the protease–inhibitor interface is

similar to that of the antigen–antibody complexes, but it is

bimodal (Fig. 1). It has a major peak (19 complexes) centred at

1500 Å2 in which all interfaces are standard size (1200–

2000 Å2) and a minor peak (four complexes) centred at

3500 Å2. The complexes in the major peak include a variety of

proteases and ‘canonical’ small inhibitors (Laskowski et al.,

2000); for example, the pancreatic trypsin inhibitor (PTI). In

the minor peak, the inhibitors are larger molecules such as

ornithodorin, which inhibits the serine protease thrombin.

Ornithodorin is a duplicate of PTI and whilst its first PTI-like

domain binds to the active site of thrombin in the same way as

PTI does to trypsin, the second domain interacts at a different

site (van de Locht et al., 1996). Each interaction forms a

recognition patch that buries approximately 1500 Å2 of
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Table 1
Sample used.

No., number of interfaces in the sample; Area B, interface area B = ASA1 +
ASA2 � ASA12; fnonpolar, fraction of the interface area contributed by
nonpolar (carbon-containing) groups; fburied, fraction of the interface atoms
that have zero ASA in the complex; nHB, number of hydrogen bonds; nwater/B,
number of water molecules immobilized at the interface divided by the
interface area (data from Rodier et al., 2005).

Type of interface No.
Area
B (Å2) fnonpolar fburied nHB

nwater/B
(10�3 Å�2)

Protein–protein complexes†
Antigen–antibody 18 1660
Protease–inhibitor 23 1900
Signal transduction 11 2500
Miscellaneous 18 1870
All 70 1900 0.58 0.34 10.0 10.0

Electron-transfer complexes‡ 10 1190 0.65 1.6
Homodimers§ 122 3900 0.65 0.36 18.5 11.3
Crystal packing

All interfaces} 1320 570
Large interfaces†† 188 1510 0.58 0.21 5.4 15.3

Protein–DNA complexes‡‡ 65 3180 0.52 0.27 21.8

† Data from Chakrabarti & Janin (2002). ‡ Data from Table 2 of Crowley & Carrondo
(2004) excluding the covalent complex adxadr. § Data from Bahadur et al.
(2003). } Data from Janin & Rodier (1995). †† Data from Bahadur et al.
(2004). ‡‡ Data from Nadassy et al. (1999); the values of fnonpolar and fburied are for
the protein side; fnonpolar = 0.41 on the DNA side.

Figure 1
The interface area of protein–protein complexes. Histogram of the values
of the interface area B = ASA1 + ASA2 � ASA12 in 19 antigen–antibody
complexes, 23 protease–inhibitor complexes and 33 other complexes.
Interfaces with an area in the range 1200–2000 Å2 are labelled ‘standard
size’. Adapted from Lo Conte et al. (1999).



protein surface. Thus, the interface comprises a single patch in

trypsin–PTI, but two in thrombin–ornithodorin. All the

protease complexes with small inhibitors and most if not all

antigen–antibody complexes in our sample form single-patch

interfaces (Chakrabarti & Janin, 2002). Moreover, a compar-

ison of the complexes with the free proteases and free inhi-

bitors indicates that rigid-body recognition is the rule in

systems involving small inhibitors such as PTI, whereas the

two-domain ornithodorin is likely to be highly flexible when

free.

2.2. Electron-transfer complexes: a short-lived assembly with
a small interface

Once formed, the trypsin–PTI complex is extremely stable,

with a dissociation constant Kd below picomolar and a half-life

of months. Antigen–antibody complexes typically have a

nanomolar Kd and half-lives of hours to days (Braden &

Poljak, 2000; Sundberg & Mariuzza, 2002). These two cate-

gories are representative of the long-lived assemblies that

have long been a favorite with biochemists and crystallo-

graphers. It is clear now that many biological processes rely on

interactions that have a much shorter half-life and there is a

shift in interest towards their study (Noreen & Thornton,

2003b). For instance, an enzyme that has a protein as

substrate, a kinase for instance, must form a short-lived

complex as the turnover rate kcat is necessarily less than the

rate of product dissociation.

Short-lived complexes are still few in the PDB and the best-

represented category is the redox complex, where an electron

is transferred from one component to another. Electron

transfer requires the donor and acceptor groups to be less than

about 17 Å apart, but the geometry is not strict and transfer

can take place at a high rate in loose complexes that dissociate

in milliseconds and have a Kd above micromolar (Mathews et

al., 2000). Fig. 2, which uses data from Crowley & Carrondo

(2004), indicates that their interfaces are often smaller than in

protease–inhibitor or antigen–antibody complexes. Some

electron-transfer complexes have standard-size interfaces, but

a majority have B in the range 900–1200 Å2, which comprises

only 5% of the sample of Fig. 1.

2.3. Signal transduction: flexible recognition and a large
interface

The example of the short-lived redox complexes may

suggest that stability is correlated with interface size, but if the

correlation exists it does not extend to other categories. For

instance, protein–protein complexes involved in signal trans-

duction must assemble and dissociate in response to the cell

environment. They cannot be long-lived, yet Table 1 shows

that they often have large interfaces. An example is trans-

ducin, the trimeric G-protein coupled with rhodopsin in the

retina. The visual signal is initiated when rhodopsin absorbs a

photon and it is converted into a chemical signal (cyclic GMP)

in a series of steps that include the dissociation of transducin

into its G� and G�� components, GTP hydrolysis by G� and

the activation of guanylate cyclase by G��. The whole process

is completed in milliseconds and therefore transducin disso-

ciation must be fast.
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Figure 2
Electron-transfer complexes have small interfaces. Values of the interface
areas of redox complexes are taken from Table 2 of Crowley & Carrondo
(2004), excluding the covalent complex adxadr. Those of the protease–
inhibitor and antigen–antibody complexes are reported from Fig. 1 for
comparison.

Figure 3
Flexible versus rigid-body recognition. (a) Chymotrypsin–ovomucoid: the
protease surface in contact with the inhibitor (1cho; Fujinaga et al., 1987)
is viewed through the inhibitor main chain. This complex illustrates rigid-
body recognition. It has a high affinity (Kd ’ 10�11 M), a standard-size
interface (B = 1470 Å2) in a single patch and a low C� r.m.s.d. between the
free and bound components (0.6 Å). (b) Transducin: the surface of the
G� subunit that interacts with the G�� pair of subunits is viewed through
the G�� main chain (PDB code 1got; Lambright et al., 1996). Transducin
illustrates flexible recognition; the G�–G�� interface is large (B =
2500 Å2), in two patches, and the association involves major conforma-
tion changes (1.8 Å C� r.m.s.d.) in both G� and G��; the affinity is
comparatively low (Kd ’ 10�7 M).



Nevertheless, the G�–G�� interface is larger (B = 2500 Å2)

than in protease–inhibitor complexes that are much more

stable. Fig. 3 compares this signal-transducing interface (PDB

code 1got) with the standard-size interface of the chymo-

trypsin–ovomucoid complex (PDB code 1cho). In both

pictures, one component (the protease or G�) is viewed

through the backbone of the other component (ovomucoid or

G��) and the contact surface is imaged in grey. The chymo-

trypsin–ovomucoid interface forms a single patch approxi-

mately 25 � 20 Å in size, surrounded by a set of immobilized

water molecules. In contrast, the G�–G�� interface is in two

patches, both lined with immobilized water. The major patch,

similar in size to the chymotrypsin–ovomucoid interface,

involves surface loops of both G� and G�� and the minor

patch an �-helix at the N-terminus of G�.

The late Paul Sigler and his group at Yale University, who

determined the X-ray structure of the transducin trimer

(Lambright et al., 1996), also determined those of G� and G��
independently. A comparison indicates that the surface loops

of both components that interact to form the main patch move

and change conformation in the complex. In addition, the

helix of the minor patch is disordered in free G�. Thus, large

changes including a disorder–order transition accompany

association in that system. Unlike trypsin–PTI and chymo-

trypsin–ovomucoid, which undergo rigid-body association,

G�–G�� recognition takes place between two flexible mole-

cules. The free-energy cost of the conformation change is

difficult to estimate, but we may assume that the presence of a

large interface compensates for it.

The retina is a paradigm of signal transduction and trans-

ducin is a key element in it. The changes that occur within G�
and G�� are an integral part of the process of signal trans-

duction. By lowering the stability of the assembly, they enable

the components of the trimeric G-protein to make other

interactions; in G�, they modulate the GTPase activity and

nucleotide-binding affinity and they are also likely to contri-

bute to the specific recognition of the activated form of

rhodopsin.

2.4. Protein–DNA recognition

Large conformation changes occur in a majority of the

protein–protein complexes other than protease–inhibitor and

antigen–antibody. In protein complexes with double-stranded

DNA (Nadassy et al., 1999; Jones et al., 1999), conformation

changes are the rule in the protein, the DNA or both. The

average protein–DNA interface in a sample of 65 complexes

has B near 3200 Å2 (Table 1). The majority of the proteins in

the sample are dimers and each subunit of the dimer forms an

interface with B in the range 1200–2000 Å2, the same as for

standard-size protein–protein interfaces. Such an interface

typically involves 24 amino-acid residues and 12 nucleotides.

The smaller DNA-binding domains form standard-size inter-

faces and large proteins such as DNA polymerase form

extensive interfaces with DNA. These proteins are multi-

domain and different domains contribute separate recognition

patches to the interface (three in the case of DNA poly-

merase).

Flexibility in protein–DNA recognition is often part of the

function. Examples are the bending of DNA by the lactose

repressor, which enables the four subunits to bind at two

different operator sites, or the large distortion in the double

helix induced by the TATA box-binding protein, which guides

the binding to DNA of other components of the transcription-

initiation complex.

2.5. Permanent assemblies versus transient complexes:
interface size, composition and hydration

Unlike protein–protein and protein–DNA complexes,

oligomeric proteins are usually permanent assemblies that

only dissociate under denaturing conditions. Whereas most of

the 122 homodimers selected by Bahadur et al. (2003) do not

dissociate appreciably, Noreen & Thornton (2003b) assembled

a set of weak homodimers that are in equilibrium with

monomers. In either sample, all subunit interfaces have

B > 900 Å2. All but two of the weak interfaces reported in

Noreen & Thornton (2003b) are standard size (noting that the

reported value is �ASA = B/2). In the sample of Bahadur et

al. (2003), only 20% of the interfaces are standard size; the

remainder are larger, with B up to 10 000 Å2.

The correlation between interface size and conformation

changes seen in the complexes holds in homodimers, because

oligomeric proteins are generally known to assemble while the

subunits fold and folding is a disorder-to-order transition. In a

complex, the protein surface involved in contacts remains

solvent-accessible until the components meet and it cannot be

very different from the remainder of the protein surface in its

physical chemical properties. In a homodimer that assembles

as it folds, the interface may be more like the protein interior.

This shows in the values of fnonpolar cited in Table 1; fnonpolar is

the fraction of the interface area B contributed by carbon-

containing groups, which cannot hydrogen bond to water, as

opposed to nitrogen- or oxygen-containing groups, which can.

This fraction is 0.57 for the average solvent-accessible protein

surface (Lee & Richards, 1971; Miller et al., 1987), essentially

the same as for the interfaces in complexes; fnonpolar is higher

(0.65) in homodimer interfaces and very low in protein–DNA

interfaces (0.52 on the protein side, 0.41 on the DNA side).

The high polarity of protein–DNA interfaces and the large

number of hydrogen bonds in these complexes reflect the

different chemistry of DNA and the large contribution of the

phosphate backbone interacting with polar protein groups

(Nadassy et al., 1999).

The difference between transient and permanent assem-

blies is also apparent in the amino-acid composition of the

interfaces, which resemble the protein surface in protein–

protein complexes and the protein interior in homodimers

(Janin et al., 1988; Young et al., 1994; Jones & Thornton, 1995;

Tsai et al., 1997; Bahadur et al., 2003; Ofran & Rost, 2003).

However, even in homodimers a majority of the atoms or

residues that lose ASA remain solvent-accessible and there-

fore belong to the protein surface, not the interior. The values
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of fburied listed in Table 1 indicate that only about one-third of

the atoms that contribute to B have zero ASA in the assembly.

Defining the core of an interface as the set of residues that

contain these buried atoms, Bahadur et al. (2003) find that the

core is larger in homodimers than in complexes, but its amino-

acid composition is the same. Interface cores are enriched in

aromatic and aliphatic residues and depleted in the charged

residues Lys, Glu and Asp, but not Arg. Moreover, interface

core residues are better conserved in evolution than the rest of

the protein surface (Guharoy & Chakrabarti, 2005) and they

constitute the majority of the ‘hot spots’ which strongly

destabilize the assembly when substituted by mutation (Covell

& Wallqvist, 1997; Bogan & Thorn, 1998; Guerois et al., 2002;

Kortemme & Baker, 2002). Thus, interface cores resemble the

protein interior except for the presence of Arg residues, which

are as abundant at protein–protein interfaces, even in the core,

as elsewhere on the protein surface.

Another major difference between protein–protein inter-

faces and the protein interior is the abundance of immobilized

water (Larsen et al., 1998; Janin, 1999; Rodier et al., 2005). The

interfaces of complexes and homodimers contain about ten

immobilized water molecules per 1000 Å2 of area (Table 1).

As water is not consistently reported in medium-resolution

X-ray structures and high-resolution structures contain at least

50% more, their actual number is probably in the range 10–20

per 1000 Å2. This amounts to 10–20% of the water molecules

that are in contact with the protein surface before assembly

(about one water per 10 Å2 of ASA). Thus, dehydration of

protein–protein interfaces is only 90–80% complete, whereas

the protein interior is almost completely dehydrated

(Hubbard & Argos, 1994). In transducin and the chymo-

trypsin–ovomucoid complex (Fig. 3), the interface core is dry

and water is present only at the edge. This is the rule in

homodimer interfaces, but immobilized water is often present

throughout the interface in other systems (Rodier et al., 2005).

3. Structural features associated with specificity

The noncovalent interactions that hold protein crystals to-

gether are the same as those that stabilize homodimers or

complexes, but they are not subject to the biological selection

that gives specificity to interactions involved in cellular func-

tions. Thus, a comparison of the interfaces created by

nonspecific contacts in crystals to the specific interfaces of

homodimers and complexes should provide useful informa-

tion on specificity.

3.1. Crystal packing creates small interfaces with little
conformation changes

From a structural point of view, there is an obvious differ-

ence between the two types of interfaces. The pairwise

contacts in a protein crystal are much less extensive than in

homodimers or complexes (Janin & Rodier, 1995; Dasgupta et

al., 1997; Janin, 1997; Carugo & Argos, 1997). The average

area of crystal-packing interfaces is only 570 Å2 per interface

(Fig. 4), yet the total buried surface is large because each

protein molecule makes 6–12 such interfaces (Janin & Rodier,

1995). Moreover, with few exceptions, proteins maintain the

same structure to within 1 Å r.m.s.d. for the main chain in

different crystal forms, suggesting that crystal packing has

little effect on conformation.

Nevertheless, some crystals contain pairwise interfaces

comparable in size to those of protein–protein complexes. The

tail of the distribution in Fig. 4 comprises large packing

interfaces, often associated with twofold symmetry elements

forming ‘crystal dimers’ that may be mistaken for real dimers.

To identify structural features other than size that distinguish

between the two, we selected from a set of crystals of mono-

meric proteins 188 packing interfaces with B > 800 Å2

including 105 with twofold symmetry (Bahadur et al., 2004).

Table 1 shows that on average these large crystal-packing

interfaces are standard size and have the same fnonpolar fraction

as in complexes. As homodimers have a larger average

fnonpolar, the chemical composition of the interface may

distinguish between real and crystal dimers, but the distribu-

tions of individual values overlap. In the same way, the amino-

acid compositions differ, but not so much as to remove

ambiguities between the two kinds of interfaces (Ponstingl et

al., 2000; Ofran & Rost, 2003; Bahadur et al., 2004).

3.2. The atomic packing of specific versus non-specific
interfaces

On the other hand, the fraction fburied of the interface atoms

that have zero ASA in the assembly is much lower at crystal

contacts than in homodimers or complexes (Table 1). As most

of their atoms remain in contact with water, crystal contacts

contain relatively fewer hydrogen bonds (about one per

280 Å2 instead of one per 200 Å2). The reason for the lack of

buried atoms is obvious in Fig. 5, which represents the inter-

faces of a real homodimer (PDB code 1kba) and a crystal

dimer (PDB code 1qci). This particular homodimer has a small

interface with about the same number of atoms as in the

crystal-packing interface, but these atoms group together,

whereas they spread apart in the crystal dimer.

The packing of atoms at an interface may be quantified by

measuring the Voronoi atomic volumes and comparing their

values with those of the protein interior (Richards, 1974;

Harpaz et al., 1994; Gerstein et al., 1995). This measurement

indicates that the packing at the interfaces of protein–protein

complexes is as tight as inside proteins (Lo Conte et al., 1999).

However, the Voronoi construction requires the atoms to be

buried, which only 21% are at crystal-packing interfaces.

Other parameters may be used to compare these interfaces

with those of complexes and homodimers: Ld and Gd, which

measure the number density of atoms at an interface (Bahadur

et al., 2004), Igap, the volume of the gap left between the

subunits divided by the interface area (Laskowski, 1995), and

Sc, an index of the shape complementarity of their surfaces

(Lawrence & Colman, 1993). In Fig. 6, these four parameters

are normalized to their mean value in homodimers and the

normalized values are all smaller for crystal contacts than

specific interfaces.
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3.3. In a protein crystal, which contacts are biologically
meaningful and which are not?

The PDB is full of entries describing proteins of unknown

or uncertain quaternary structure. Although quaternary

structure should be determined in solution, criteria based on

atomic coordinates can be useful, especially when the protein

is known to be oligomeric and the crystal packing offers more

than one possible mode of assembly. In such cases, the specific

interfaces that build the oligomer must be identified among

other interfaces that do not exist in solution.

The Probable Quaternary Structure database (PQS;

Henrick & Thornton, 1998) assigns quaternary structures

based on the interface size and amino-acid composition

(Ponstingl et al., 2000). The accuracy of dimer prediction, only

about 80%, is much improved when multiple sequences are

available and conservation can be estimated (Valdar &

Thornton, 2001). Still, we find that geometry alone can do

better than 80%. In the sample of Table 1, two protein

molecules related by twofold symmetry and burying more

than B = 800 Å2 have an 88% probability of being a homo-

dimer in solution if

ðfnonpolarB> 1000 Å
2

and fburied > 0:24Þ

or ðfnonpolar > 0:61 and nHB > 8Þ

and they have the same 88% probability of being a crystal

dimer (an artefact of crystallization) if these criteria are not

met (this application of the WizWhy data-mining algorithm is

courtesy of Dr M. Marcus-Kalish, Tel Aviv University).

4. Predicting interaction: the CAPRI experiment

Structural genomics programs perform high-throughput

structure determination of individual gene products. They aim

to produce a set of structures that can be extended to all

proteins by homology modelling. Whereas multi-protein

complexes can also be approached in a systematic manner,

they are difficult to prepare and crys-

tallize and their study is not prone to

high throughput. Thus, there is a great

interest in predicting the mode of asso-

ciation of proteins based on their

structure. The CAPRI (critical assess-

ssessment of predicted interactions)

experiment was designed to evaluate

the capacity of docking algorithms to

perform such predictions (Janin et al.,

2003).

A CAPRI target is a complex

between proteins of known structure

and for which a X-ray structure has

been determined, but not yet published.

A round of prediction opens each time a

target is offered by crystallographers to

the CAPRI Management Committee.

Predictors are given PDB entry codes

for the proteins and they have a few

weeks to submit up to ten models of the complex to the

CAPRI web site (http://capri.ebi.ac.uk; managed by Dr K.

Henrick, Hinxton, England). These models are then assessed

by comparison to the X-ray structure and ranked based on two

types of criteria: the identification and location of the binding

epitopes and the capacity of the models to reproduce the

residue–residue contacts seen at the interface of the experi-

research papers

6 Janin et al. � Macromolecular recognition in the PDB Acta Cryst. (2007). D63, 1–8

Figure 5
Atomic packing at a specific and a nonspecific interface. The pink balls represent atoms at the
interface of (a) one subunit of the �-bungarotoxin dimer (PDB code 1kba) and (b) the pokeweed
protein crystal dimer (PDB code 1qci). Each interface buries approximately 1000 Å2 and includes
about 50 atoms, but whereas these atoms form a compact patch in the case of the homodimer, they
spread apart in the crystal contact.

Figure 4
The size of crystal-packing interfaces. Distribution of the interface area B
of 1320 pairs of molecules in crystals of monomeric proteins analyzed by
Janin & Rodier (1995). The average is B = 570 Å2. Interfaces with values
of B comparable to those found in protein–protein complexes (B >
800 Å2) occur mostly in crystals with twofold symmetry; they form ‘crystal
dimers’ that may be mistaken for real homodimers. In crystals with no
twofold symmetry, the number of packing interfaces with B > 800 Å2

follows an extreme value distribution, approximated here by the red line
(Janin, 1997). The boxed region includes 103 crystal dimers and 85 other
large crystal-packing interfaces whose properties may be compared with
those of the interfaces in complexes and homodimers (Bahadur et al.,
2004).



mental structure. In 2001–2005, 21 target complexes have been

subjected to prediction by up to 37 predictor groups. They

include antigen–antibody and enzyme–inhibitor complexes

and also complexes involved in a variety of cellular processes

including signal transduction and oligomeric proteins (Janin,

2005).

The results of the predictions have been evaluated by the

CAPRI assessors (Professor S. Wodak and her colleagues in

Brussels and Toronto) and published in detail for Rounds 1–5

(Mendez et al., 2003, 2005). 14 of the 19 targets had predictions

that were judged ‘good’ or ‘high-quality’ by the assessors. The

binding epitopes were within 2 Å of their correct position and

the models reproduced at least 30% of the native residue–

residue contacts. Such models can easily be tested by

biochemical methods and guide site-directed mutagenesis in

the absence of an experimental structure. In some cases, many

predictor groups who used different docking algorithms and

different scoring functions submitted models in which most of

the interface residues were correctly identified and the

geometry approximately correct.

Prediction was of lesser quality on two targets and it failed

entirely on three. The one failure in the period 2004–2005 was

for a homodimeric protein in which the subunits change their

mode of association upon a mutation. It undergoes large

domain movements that proved to be beyond the reach of

existing algorithms, although smaller changes were success-

fully simulated in other targets. In general, the quality of the

predictions was highly dependent on the extent to which the

target differed in structure from the free proteins. When the

conformation changes were small, some very accurate

predictions were made. Moreover, a comparison with the

results of the first CAPRI rounds indicates that obvious

progress has been made, especially in handling conformation

changes and in ranking docking solutions (Mendez et al.,

2005).

5. Conclusion

The systems we have analyzed are diverse in structure and

function, yet they have features in common. One is the size of

the interface: to make a biologically relevant protein–protein

(or protein–DNA) interaction, about 900 Å2 of macro-

molecular surface contributed by some 45 atoms of each

component must be removed from contact with the solvent. It

was suggested many years ago that this lower limit reflects the

physics of macromolecular association (Chothia & Janin,

1975). When two molecules associate, translational/rotational

degrees of freedom are converted into vibrational degrees of

freedom of lower entropy. The free-enthalpy cost of the

conversion �Grt has been disputed and estimates range from 0

to 60 kJ mol�1 in the 1 M standard state. �Grt may be small in

redox complexes that have a loose geometry, but the higher

value is likely to apply to antigen–antibody or protease–

inhibitor complexes and to homodimers (Finkelstein & Janin,

1989; Karplus & Janin, 1999). Thus, a micromolar affinity that

implies �G� = �RTlnKd ’ 34 kJ mol�1 may require

94 kJ mol�1 of favourable free enthalpy. Most of that free

enthalpy arises at the interface: from the hydrophobic effect as

nonpolar groups become dehydrated, close-packed atoms that

optimize van der Waals forces and interactions between polar

protein groups that replace weaker interactions with water

(Nicholls et al., 1991; Young et al., 1994; Xu et al., 1997; Janin,

2000). On average, each of these terms scales with the inter-

face area. Thus, interfaces with B ’ 1000 Å2 may allow

short-lived assemblies only, whereas those with B in the 1200–

2000 Å2 range provide the stability and the high specificity

exemplified by antigen–antibody recognition.

Complexes that form standard-size interfaces generally

assemble by a rigid-body recognition mechanism. The

macromolecular surfaces involved are complementary in

shape and physical chemical properties and need only local

adjustments to optimize their interaction. In contrast, trans-

ducin and protein–DNA complexes undergo flexible recog-

nition in which the two surfaces must rearrange to achieve

complementarity. The two mechanisms relate to different

biological functions and the large conformation changes that

accompany binding often play a critical role in function.

Docking algorithms reproduce rigid-body recognition effi-

ciently and accurately, but they perform less well on systems

that undergo large conformation changes. Simulating flexible

recognition is a very active field of study and the CAPRI

experiment has been a powerful incentive for developing

novel procedures leading to significant progress in the last 4 y.

Predictor groups wish very much that the experiment will

continue. This will require new targets to be offered by

crystallographers, who we thank in advance for their coop-

research papers
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Figure 6
Interface compactness from four packing indices. The packing indices Ld,
Gd, 1/Igap and Sc are calculated for the interfaces of Table 1. Ld and Gd are
the local and global atomic density indices of Bahadur et al. (2004); Igap is
the gap-volume index of Laskowski (1995); Sc is the shape-complemen-
tarity score of Lawrence & Colman (1993). The packing indices are
normalized relative to their average value in homodimer interfaces.
Crystal contacts yield values of all four indices that are less than 100,
indicating that their packing is less tight than in the specific interfaces.



eration: structural biologists, please provide targets for

CAPRI!

This work has benefitted over many years from the colla-

boration of Dr Cyrus Chothia (Cambridge) and Shoshana

Wodak (Free University of Brussels and University of

Toronto). JJ acknowledges financial support from the EIDIPP

program of Action Concertée Incitative IMPBio.
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